

Recent results from heavy ion collisions at LHCb

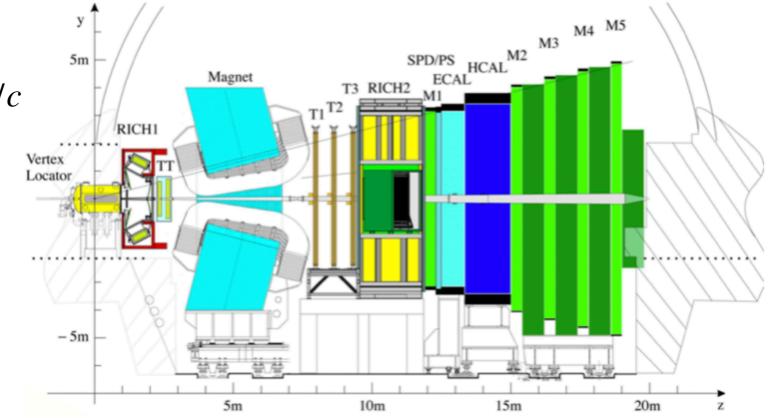
Óscar Boente García on behalf of the LHCb collaboration 13/04/2021 DIS 2021 - Online

> Instituto Galego de Física de Altas Enerxías - USC Contact: oscar.boente@usc.es

The LHCb detector

Che-arm spectrometer at LHC fully

LHCb JINST 3 (2008) S08005

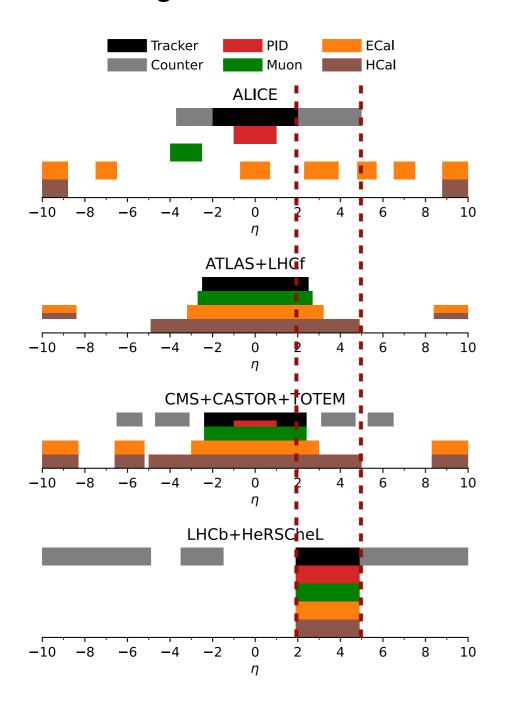

LHCb performance JMPA 30 (2015) 1530022

- One-arm spectrometer at LHC fully instrumented in 2 < η < 5
 - Tracking system with momentum resolution

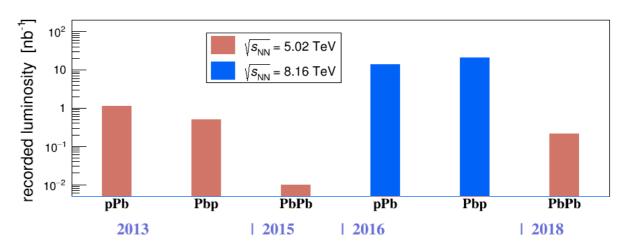
$$\Delta p/p = 0.5 - 1\%$$
 from 2 to $200 \,\mathrm{GeV}/c$

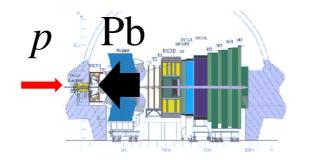
Excellent hadron and muon ID

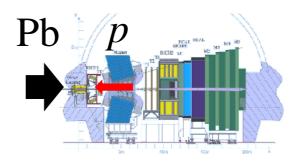
$$\begin{aligned} &\text{Muon} & \left\{ \begin{array}{l} \varepsilon(\mu \to \mu) \ \sim 97 \,\% \\ &\text{misID} \, \varepsilon(\pi \to \mu) \ \sim 1 - 3 \,\% \end{array} \right. \\ &\text{Hadron} & \left\{ \begin{array}{l} \varepsilon(K \to K) \ \sim 95 \,\% \\ &\text{misID} \, \varepsilon(\pi \to K) \ \sim 5 \,\% \end{array} \right. \end{aligned}$$



- Precise vertexing impact parameter resolution $(15 + 29/p_{\rm T} [{\rm GeV}]) \, \mu{\rm m}$
- Calorimeters ECAL, HCAL for ECAL, $\Delta E/E = 1\% + 10\,\%\,/\sqrt{E[{\rm GeV}]}$
- HeRSCheL detector: scintillating counters covering high rapidity region to veto background in UPC (ultra peripheral collisions)


Heavy ion collisions at LHCb


 Only detector at LHC fully equipped in forward region


Full run 1+2 dataset from HI collisions:

• Two configurations in pPb collisions:

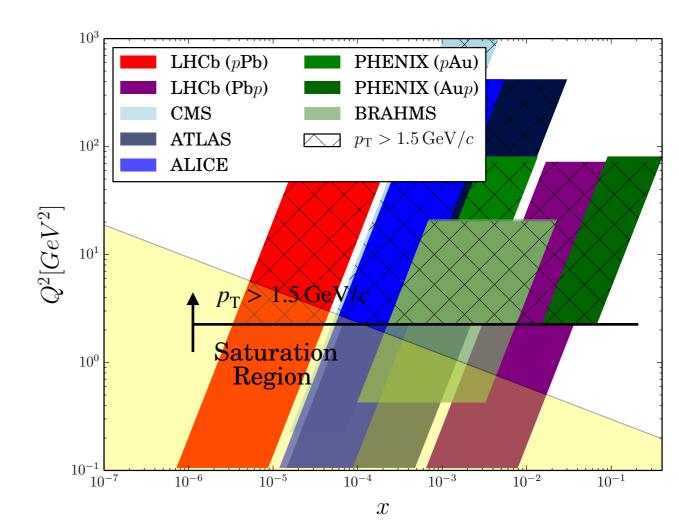
Forward $\eta > 0$

Backward $\eta < 0$

Boost of nucleon-nucleon cms system: $\eta = \eta_{lab} - 0.465$

Results for today

- 1. Prompt charged particle production in pPb and pp at $5.02 \, TeV$ **NEW!**
 - LHCb-PAPER-2021-015 (in preparation)


- 2. Prompt-production cross-section ratio χ_{c2}/χ_{c1} in $p{\rm Pb}$ at $8.16\,{\rm TeV}$
 - LHCb-PAPER-2020-048, arXiv:2103.07349

- 3. Photo-produced J/ψ in peripheral PbPb collisions NEW!
 - LHCb-PAPER-2020-043 (in preparation)

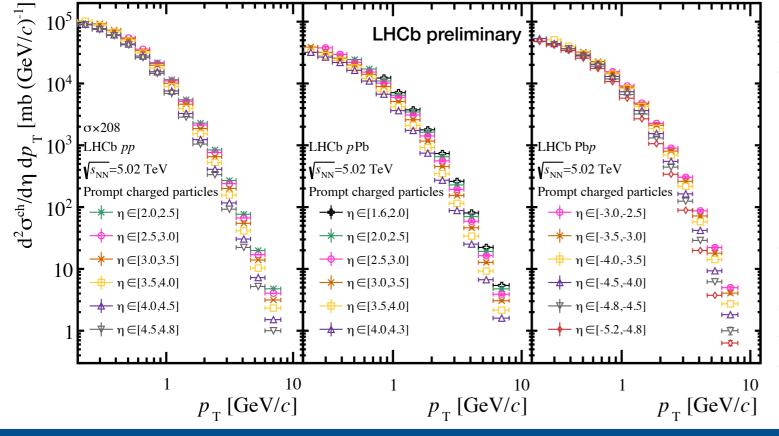
- 4. Coherent J/ψ production in PbPb UPC
 - LHCb-CONF-2018-003

- Inclusive prompt charged particle spectra provides information of the initial state of the collision
- LHCb can probe unprecedented
 Bjorken-x range
 - forward, $10^{-6} \le x \le 10^{-4}$
 - backward, $10^{-3} \le x \le 10^{-1}$
- Possible access to saturation region in perturbative scale $p_{\rm T} > 1.5 \, {\rm GeV}/c$
- Backward acceptance overlaps with (x,Q^2) at central BRAHMS (dAu) and backward PHENIX (Aup)
- Nuclear modification factor: $R_{p{\rm A}} \equiv \sigma_{p{\rm A}}/(A\sigma_{\rm pp})$

Saturation region: PRD59, 014017 (1998), PRL100, 022303 (2008)

 Q^2 : exchanged momentum between interacting partons

x: momentum fraction shared by the probed parton


$$Q^2 \sim m^2 + p_{\rm T}^2$$
, $x \sim \frac{Q}{\sqrt{s_{NN}}} e^{-\eta}$
 $m = 256 \,\text{MeV}/c^2$

•
$$\left. \frac{d^2 \sigma}{dp_{\mathrm{T}} d\eta} \right|_{p\mathrm{Pb},pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta,p_{\mathrm{T}})}{\Delta p_{\mathrm{T}} \Delta \eta},$$

$$\frac{d^2\sigma}{dp_{\rm T}d\eta} \bigg|_{p{\rm Pb},\,pp} = \frac{1}{\mathscr{L}} \cdot \frac{N^{ch}(\eta,p_{\rm T})}{\Delta p_{\rm T}\Delta\eta}, \quad \begin{cases} \sqrt{s_{\rm NN}} = 5.02\,{\rm TeV} \\ p > 2\,{\rm GeV}/c,\ 0.2 < p_{\rm T} < 8\,{\rm GeV}/c \end{cases} \quad \text{(in preparation)} \\ \begin{cases} pp:\ 2 < \eta < 4.8,\ \mathscr{L} = 3.49 \pm 0.07\,{\rm nb}^{-1} \\ p{\rm Pb,\ forward:}\ 1.5 < \eta < 4.3,\ \mathscr{L} = 42.73 \pm 0.98\,\mu{\rm b}^{-1} \\ {\rm Pb}p,\ {\rm backward:}\ -2.5 < \eta < -5.3,\ \mathscr{L} = 38.71 \pm 0.97\,\mu{\rm b}^{1} \end{cases}$$

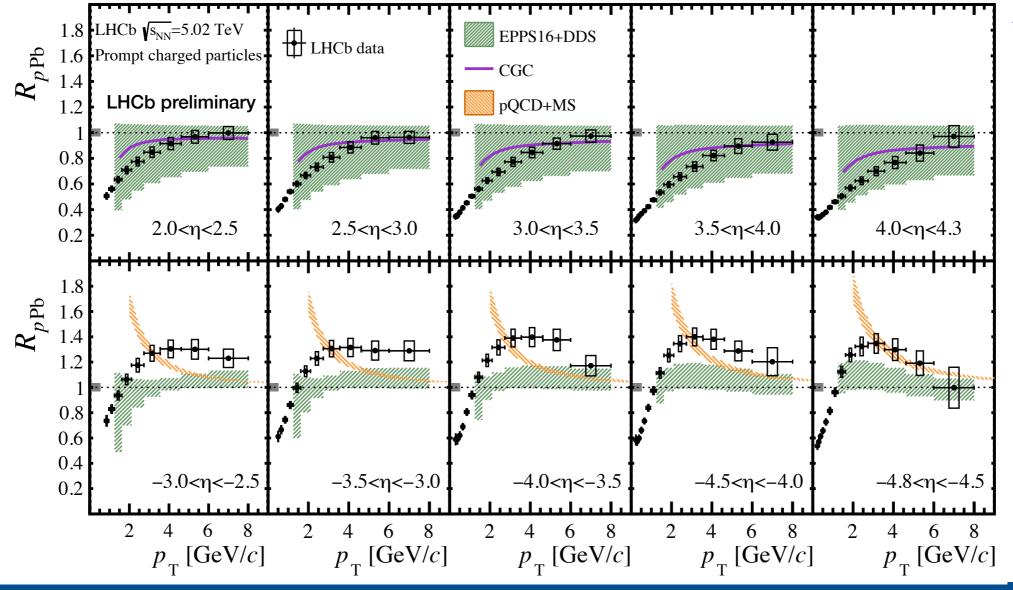
- Prompt charged particle yields measured with tracking system
- Raw yield corrected mainly by:
 - reconstruction and selection efficiencies
 - background from fake tracks and secondary particles

Total uncertainty:

- down to 2.8% in $d^2\sigma/d\eta dp_T$
- down to 4.2% in $R_{p\text{Pb}}$

Uncertainty source	<i>p</i> Pb [%]	Pb p [%]	pp~[%]
Track finding efficiency	1.5-5.0	1.5-5.0	1.6-5.3
Detector occupancy	0.0-2.8	0.6 - 2.9	0.1 - 1.6
Particle composition	0.4-4.1	0.4 - 4.6	0.3 - 2.4
Selection efficiency	0.7-2.2	0.7 - 3.0	1.0 - 1.7
Purity	0.1-1.8	0.1 - 11.7	0.1 - 5.8
Truth-matching	0.0-0.1	0.0 - 0.1	0.1 - 0.2
Luminosity	$ \bar{2}.\bar{3} ^{-1}$	-2.5	-2.0
Statistical uncertainty	0.0-0.6	0.0 - 1.0	0.0 - 1.1
Total (in $d^2\sigma/d\eta dp_T$)	3.0-6.7	3.3-14.5	2.8-8.7
Total (in R_{pPb})	4.2-9.2	4.4-16.9	

• Nuclear modification factor:
$$R_{p\mathrm{Pb}}(\eta,p_{\mathrm{T}}) = \frac{1}{A} \frac{d^2 \sigma_{p\mathrm{Pb}}(\eta,p_{\mathrm{T}})/dp_{\mathrm{T}} d\eta}{d^2 \sigma_{pp}(\eta,p_{\mathrm{T}})/dp_{\mathrm{T}} d\eta}, \quad A = 208$$

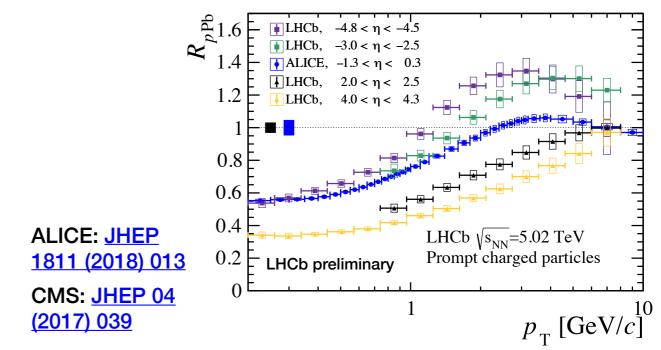

LHCb-PAPER-2021-015 (in preparation)

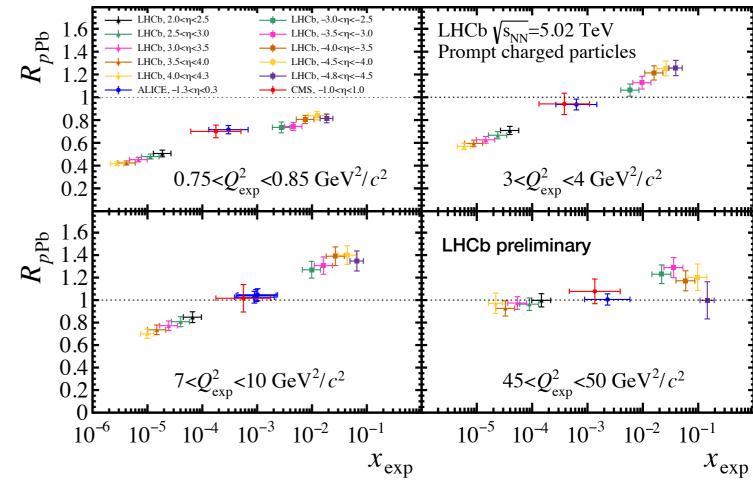
- Strong suppression at forward η
- Enhancement at backward for $p_{\rm T} > 1.5\,{\rm GeV}/c$, as observed by PHENIX in ${\rm Au}p$

Models:

- EPPS16+DDS: I. Helenius et. al. <u>JHEP09(2014) 138</u>
- CGC: T. Lappi et. al. PR D88, 114020
- pQCD calculation with MS: Z. B. Kang et. al. PR D88(2013) 054010

PL B740(2015) 23



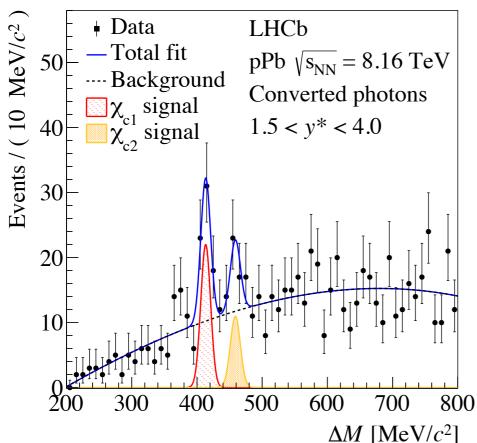

LHCb-PAPER-2021-015 (in preparation)

- Continuous trend from forward to backward η , including ALICE result
- Enhancement in backward region starts at different p_T for different η
- Defining auxiliary variables x_{exp} and Q_{exp}^2 :

$$Q_{exp}^2 \equiv m^2 + p_{\rm T}^2$$
 and $x_{exp} \equiv \frac{Q_{exp}}{\sqrt{s_{\rm nn}}} e^{-\eta}$

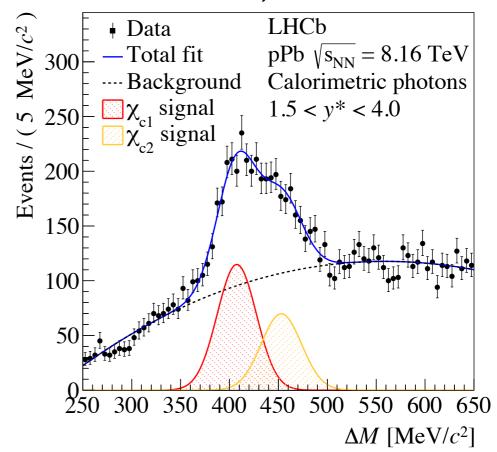
- with η and $p_{\rm T}$ the center of each bin and $m=256\,{\rm MeV}/c^2$,
- Indirect study of the evolution of $R_{p\mathrm{Pb}}$ with x and Q^2
- Continuous evolution of $R_{p{
 m Pb}}$ with x_{exp} at different Q_{exp}^2 , between forward, central and backward η regions

Prompt-production cross-section ratio χ_{c2}/χ_{c1} in $p{\rm Pb}$



- First χ_{c2} , χ_{c1} measurement in nuclear collisions at LHC! $\sqrt{s_{\mathrm{NN}}} = 8.16\,\mathrm{TeV}$, $14\,\mu\mathrm{b}^{-1}$ (pPb), $21\,\mu\mathrm{b}^{-1}$ (Pbp)
- Complements measurements of J/ψ , $\psi(2S)$, $\Upsilon(nS)$ production in pPb at LHCb
- Using radiative decay $\chi_{cn} \to J/\psi(\to \mu^+\mu^-)\gamma$, two strategies to detect γ

arXiv:2103.07349 submitted to PRC Lett.


- Prompt candidates selected with t_z requirement, $t_z = \frac{(z_{decay} z_{PV}) \times M_{\chi_{c1}}}{p_z}$
 - converted photons ($\gamma \rightarrow e^{\pm}$, material interaction)

Excellent mass resolution, low statistics

- calorimetric photons (using calorimeter)

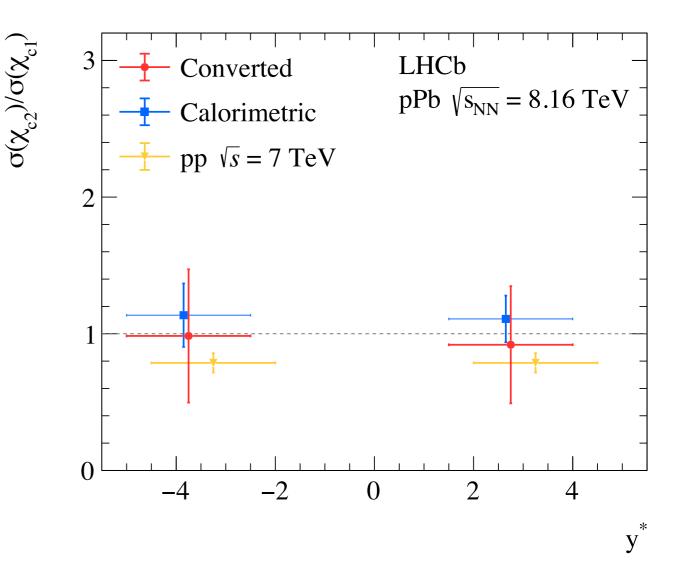
Reasonable statistics, worse mass resolution

$$\Delta M \equiv M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-)$$

Prompt-production cross-section ratio χ_{c2}/χ_{c1} in $p{\rm Pb}$

arXiv:2103.07349 submitted to PRC Lett.

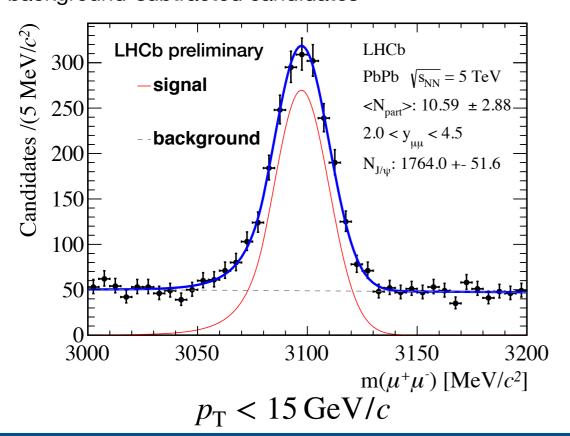
$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = \frac{N_{\chi_{c2}}}{N_{\chi_{c1}}} \frac{\varepsilon_{\chi_{c2}}}{\varepsilon_{\chi_{c1}}} \frac{\mathscr{B}(\chi_{c2} \to J/\psi\gamma)}{\mathscr{B}(\chi_{c1} \to J/\psi\gamma)}, \quad \text{where } \frac{\varepsilon_{\chi_{c1}}}{\varepsilon_{\chi_{c2}}} = \frac{\varepsilon_{\chi_{c1}}^{\text{acc}}}{\varepsilon_{\chi_{c2}}^{\text{acc}}} \frac{\varepsilon_{\chi_{c1}}^{\text{reco}}}{\varepsilon_{\chi_{c2}}^{\text{reco}}}$$

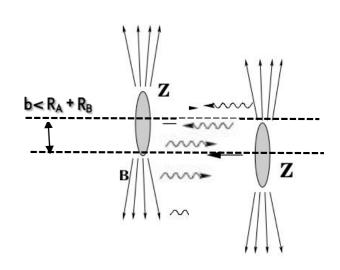

- Cancellation of efficiencies in cross-section ratio
- Ratio consistent with unity
 - No rapidity dependence within uncertainty
- Consistent with pp 7 TeV ratio within 2σ (JHEP10(2013) 115)

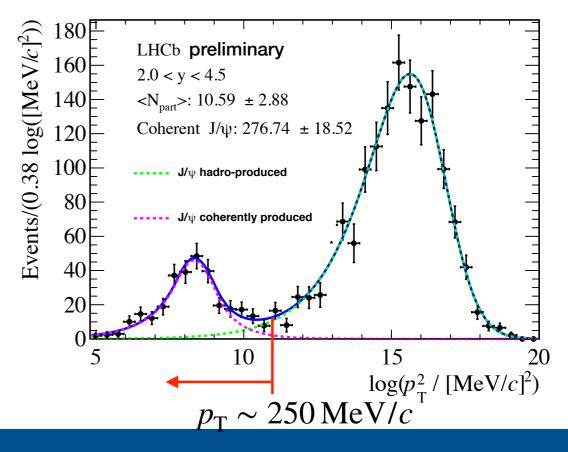
$$\mathcal{R} = \frac{\left. \sigma(\chi_{c2}) / \sigma(\chi_{c1}) \right|_{pPb}}{\left. \sigma(\chi_{c2}) / \sigma(\chi_{c1}) \right|_{pp}}$$

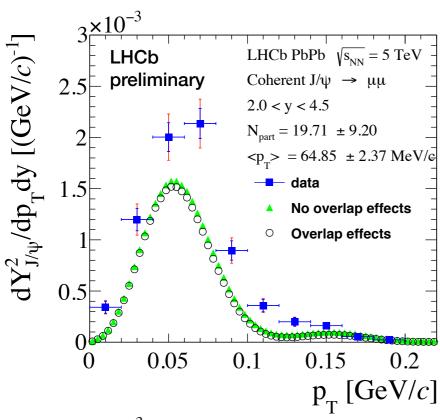
$$\mathcal{R} = 1.41 \pm 0.21 \pm 0.18$$
 (forward)

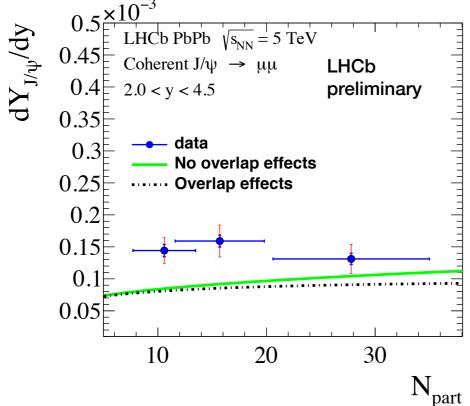
$$\mathcal{R} = 1.44 \pm 0.24 \pm 0.25$$
 (backward)


Nuclear effects affect similarly to both states


Photo-produced J/ψ in peripheral PbPb collisions


- Studied coherently photo-produced J/ψ in peripheral PbPb collisions
 - Could this be an explanation for the low- $p_{\rm T}$ excess observed by ALICE in PbPb and STAR in AuAu? (PRL 123, 132302, PRL 116, 222301)
- First PbPb measurement at LHCb!
- Using 2018 PbPb sample, $\sqrt{s_{\rm NN}} = 5.02 \, {\rm TeV}, \sim 210 \, \mu {\rm b}^{-1}$, $85 \, \%$ to $60 \, \%$ centrality
- Centrality determination based on energy deposited in ECAL and Glauber calculation
- Non-prompt J/ψ removed with t_7 selection
- Coherently-produced J/ψ contribution obtained with fit to $\log(p_{\rm T}^2)$ distribution of background-subtracted candidates


Peripheral Collision



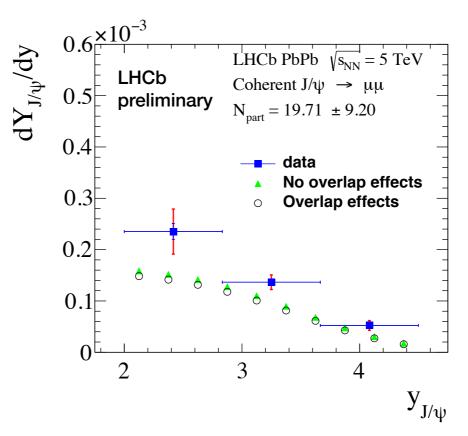

13/04/2021

Photo-produced J/ψ in peripheral PbPb collisions

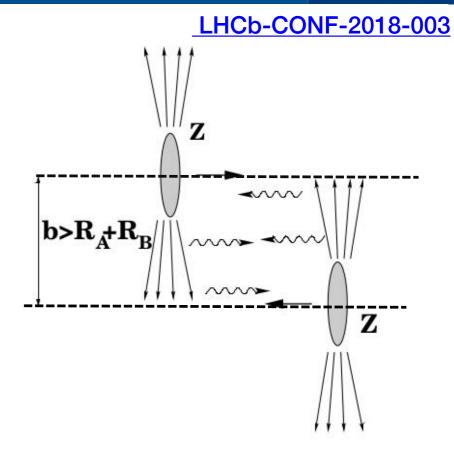
LHCb-PAPER-2020-043 (in preparation)

$$\frac{dY_{J/\psi}^{i}}{dy} = \frac{N_{J/\psi}^{i}}{\mathscr{B}N_{\mathrm{MB}}^{i}\varepsilon_{\mathrm{tot}}^{i}\Delta y}$$

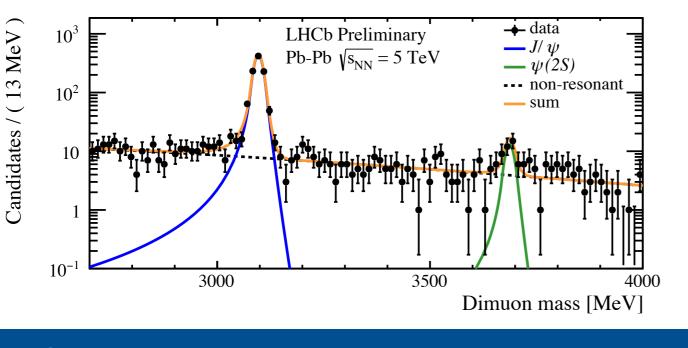
$$\frac{dY_{J/\psi}^{i}}{dydp_{T}} = \frac{dY_{J/\psi}^{i}}{dy} \times \frac{1}{\Delta p_{T}}$$

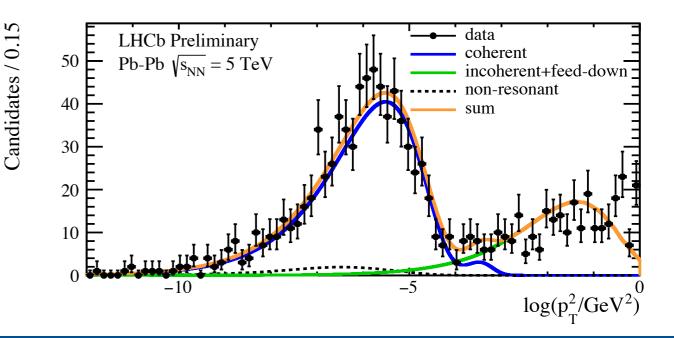
- Photo-produced J/ψ yields measured in $p_{\rm T}$, y and centrality bins
- Most precise $p_{\rm T}$ -dependent measurement to date
- Data qualitatively well reproduced in models, with and without nuclear overlap effects

W. Zha et al. <u>Phys. Rev. C97 (2018) 044910</u> W. Zha et. al. <u>Phys. Rev. C99, 061901(R)</u>


Photo-produced J/ψ confirmed as source of the excess

Coherent J/ψ production in PbPb UPC



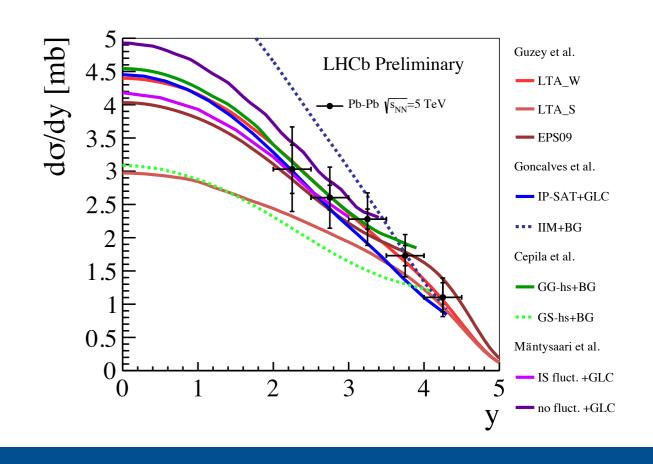

- Measured coherently produced J/ψ in ultra-peripheral PbPb collisions at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$
- UPC events selected requiring minimal activity in calorimeters
- Using small 2015 PbPb sample of $\mathcal{L} = 10.1 \pm 1.3 \,\mu\text{b}^{-1}$
- Signal from $J/\psi \to \mu^+\mu^-$ extracted with fit
- Template fit to $\log(p_{\mathrm{T}}^2)$ distribution to extract coherent contribution
 - Templates from <u>STARLight</u> generator

(Comput.Phys.Commun. 212 (2017) 258-268)

Ultra-Peripheral Collision

Coherent J/ψ production in PbPb UPC

LHCb-CONF-2018-003


- Coherent J/ψ yields corrected with detection efficiencies
- Selection will be improved in final publication using HeRSCheL detector (JINST 13 (2018) 04, P04017)
- Total cross-section in 2.0 < y < 4.5:

$$\sigma = 5.3 \pm 0.2(stat) \pm 0.5(syst) \pm 0.7(lumi)$$
 mb

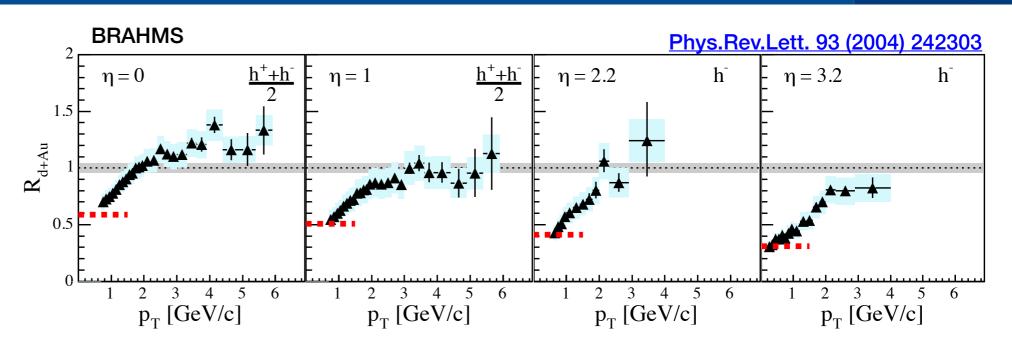
- Largest uncertainty contribution from luminosity determination
- Comparison with predictions from different models:

Cepila *et al.* PR C97 024901 (2018) Gonçalves *et al.* PR D96 094027 (2017) Guzey *et al.* PR C93 055206 (2016) Mäntysaari *et al.* PL B772 (2017) 832

Source	Relative uncertainty $(\%)$
Reconstruction efficiency	2.1-4.5
Selection efficiency	3.2
Hardware trigger efficiency	3.0
Software trigger efficiency	1.6 – 5.3
Momentum smearing	3.3
Mass fit model	3.9
Feed-down background	5.8
Branching Fraction	0.6
Luminosity	13.0

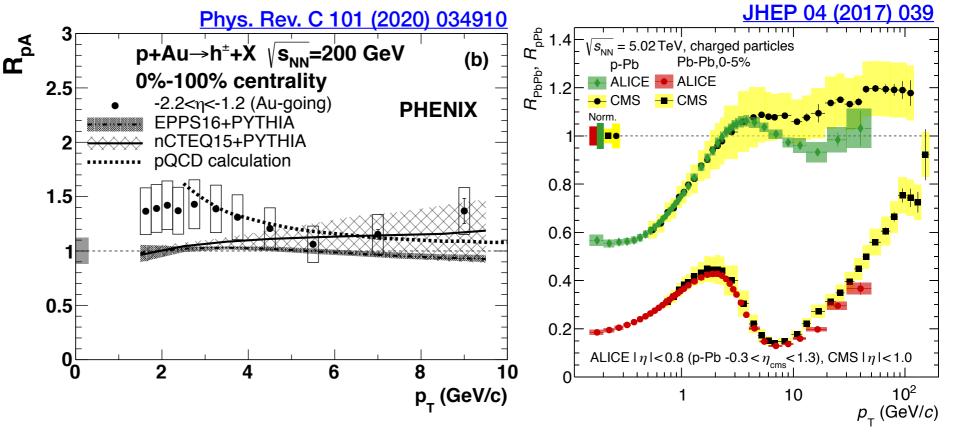
Conclusions

New results from LHCb in heavy ion collisions were presented


- Full list of published results here
- First determination of $R_{p\mathrm{Pb}}$ for prompt charged particles in forward and backward regions at LHC!
 - Measured prompt charged particle production cross-section in pp and pPb at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$
 - Measurement down to $4.2\,\%$ total relative uncertainty in $R_{p\mathrm{Pb}}$
 - Strong constrains to nuclear PDFs and saturation models down to very low x
- First measurement of χ_{c2} and χ_{c1} production in nuclear collisions at LHC at $\sqrt{s_{\rm NN}}=8.16\,{\rm TeV}$
- Measurement of photo-produced J/ψ in peripheral PbPb collisions at $\sqrt{s_{\mathrm{NN}}} = 5.02\,\mathrm{TeV}$
 - First PbPb result at LHCb
 - Most precise determination of p_{T} spectrum to date
 - Confirmation of the source of the excess in J/ψ production at low p_{T}
- Measurement of coherent J/ψ production in ultra-peripheral PbPb collisions at $\sqrt{s_{\rm NN}}=5.02\,{\rm TeV}$

Backup slides

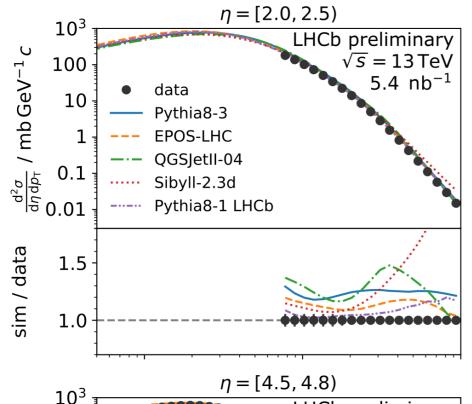
Previous results of R_{pPb} for charged particles


BRAHMS: Phys.Rev.Lett. 93 (2004) 242303

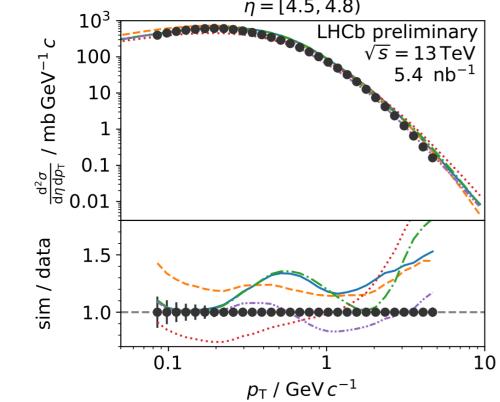
PHENIX: Phys. Rev. C 101 (2020) 034910

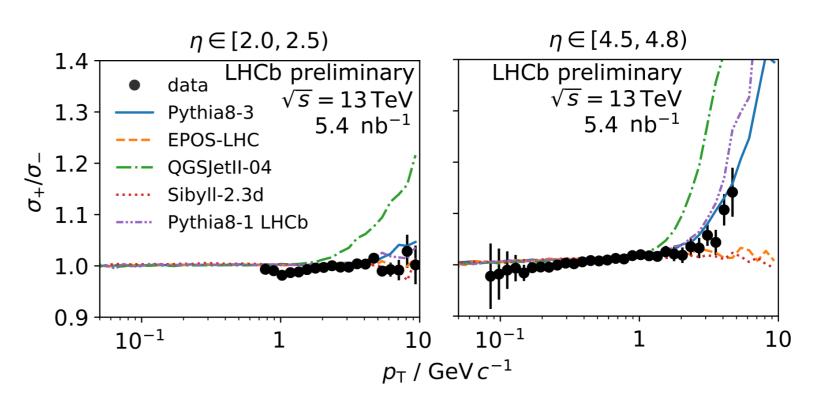
CMS: <u>JHEP 04 (2017) 039</u>

ALICE: JHEP 1811 (2018) 013


ATLAS: Phys. Lett. B 763 (2016) 313

Prompt charged particle production at 13 TeV

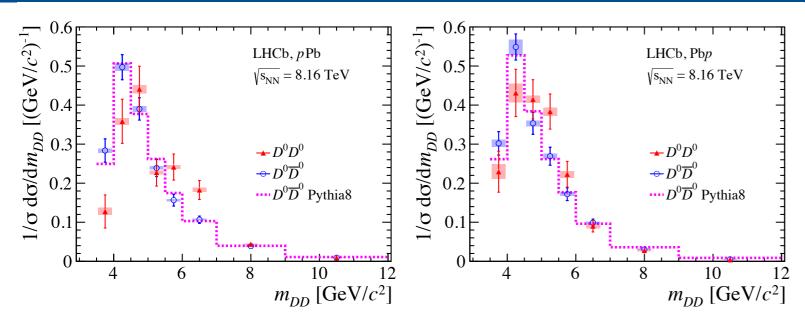

LHCb-PAPER-2021-010 (in preparation)



- First double-differential measurement of forward charged particle spectrum at $\sqrt{s}=13\,\mathrm{TeV}$
- Fundamental measurement for QCD, generator tuning and astroparticle physics

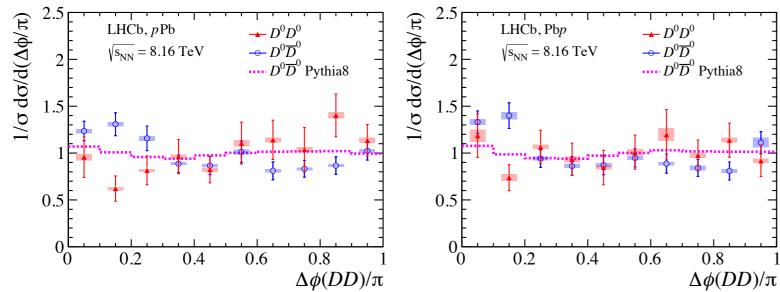
$$\frac{d^2\sigma}{dp_{\rm T}d\eta} = \frac{1}{\mathscr{L}} \cdot \frac{n}{\Delta p_{\rm T}\Delta \eta}$$

$$n_{\rm cand} = \varepsilon n + \sum_{i} n_{\rm backgr,i}$$



Charm pair production and DPS scattering in pPb

Phys. Rev. Lett. 125, 212001


- First measurement of charm pair production in *p*Pb at $\sqrt{s_{\rm NN}} = 8.16 \, {\rm TeV}$
- Study Double Parton Scattering (DPS):

$$\sigma_{\text{DPS}}^{AB} = \frac{1}{1 + \delta_{AB}} \frac{\sigma^A \sigma^B}{\sigma_{\text{eff}}}$$

- DPS enhanced about a factor 3 with respect to Single Parton Scattering (SPS) in pPb
- Study combinations of D_1D_2 and DJ/ψ

• Study combinations of
$$D_1D_2$$
 and DJ/ψ pairs ($D=D^0,D^+,D_s^+$)

- - SPS →enhanced in opposite-sign pairs DPS →enhanced in same-sign pairs

For 1 b:

	$-5 < y(H_c) < -2.5$	0 (0)	pp extrapolation
D^0D^0	$0.99 \pm 0.09 \pm 0.09$	$1.41 \pm 0.11 \pm 0.10$	4.3 ± 0.5
$J/\psi D^0$	$0.64 \pm 0.10 \pm 0.06$	$0.92 \pm 0.22 \pm 0.06$	3.1 ± 0.3
σ_{eff} in b)			Doord

Result assuming SPS and no nuclear effects